Bu Blogda Ara

18 Ekim 2011 Salı

MATEMATİK BÖLÜMÜMÜZ


Sayı , birçokluğu belirtmek için kullanılan soyut birimdir. Fakat modern matematikte artık büyüklük belirtmediği halde geleneksel sayıların çeşitli özelliklerine benzer özellikler taşıyan nesnelere de sayı denmesi adettendir.Sayıları yazılı olarak göstermek için rakamlar kullanılmaktadır.

Doğal sayılar, şeklinde sıralanan tam sayılardır. Negatif değer almazlar. Bazı kaynaklarda "0" doğal sayı olarak alınmaz. Matematikte hala sıfırın bir doğal sayı alınıp alınmayacağı tartışma konusudur, ancak eğer cebirsel inşâlar yapılmak isteniyorsa "0" sayısının doğal sayı olarak alınması avantaj sağlayabilir. Matematiğin diğer dallarında da problem hangi durumda daha kolay ifade edilebilecekse doğal sayılar kümesi de o şekilde alınır.

Konu başlıkları

[gizle]

Sayı değeri [değiştir]

Bir doğal sayının rakamlarının belirttiği değere rakamların sayı değeri denir. Doğal sayının rakamlarının toplamına rakamların sayı değerleri toplamı denir.

Basamak değeri [değiştir]

9 basamaklı bir doğal sayının basamaklarının
  • Birler basamağının basamak değeri :1
  • Onlar basamağının basamak değeri :10
  • Yüzler basamağının basamak değeri :100
  • Binler basamağının basamak değeri :1.000
  • On binler basamağının basamak değeri :10.000
  • Yüz binler basamağının basamak değeri :100.000
  • Milyonlar basamağının basamak değeri :1.000.000
  • On milyonlar basamağının basamak değeri :10.000.000
  • Yüz milyonlar basamağının basamak değeri :100.000.000
Onlu sayma düzeninde bir basamağın değeri sağındaki basamağın 10 katıdır.
Bir rakamın basamak değeri o rakam ile rakamın yazıldığı basamağın çarpımıyla bulunur..
12345 sayısındaki 2 nin basamak değeri 2 (sayı değeri) ve 1000 (basamak değeri) çarpılarak 2 X 1000 2000 şeklinde bulunur.
bazı sayılar 3 le çarpılarakta bulunur

Peano Belitleri tanımı [değiştir]

peano belitleri tarihsel olarak doğal sayıların en genel (ve sezgisel) tanımıdır. Modern tanımlar bu tanımı sağlar.
  • Sıfır bir doğal sayıdır.
  • Her doğal sayının, yine bir doğal sayı olan bir ardılı vardır.
  • Ardılı sıfır olan hiç bir doğal sayı yoktur.
  • Ardılları eşit olan doğal sayılar da birbirine eşittir.
  • Doğal sayılardan oluşan bir küme, sıfırı ve her doğal sayının ardılını içeriyorsa o küme doğal sayılar kümesine eşittir.
Sıfırı doğal sayı olarak kabul etmeyen grup, buradaki belitlerin "Bir, bir doğal sayıdır." olarak kabul eder.

BU konu sizi zorluyabilir

Çok çalısın lannnnnnnnnnnnnn...

ZFC tanımı [değiştir]

Zermelo-Freankel küme kuramı doğal sayılar, von Neumann sıral sayılarıyla inşa edilebilir. Buna göre her sayı temelde bir kümedir. Eğer sıfır boşküme olarak tanımlanırsa ve her n sayının ardılı, n + , n{n} olarak verilirse, doğal sayılar inşa edilmiş olur.
Bu tanım doğal sayıların yinelgen bir yapıda olduğunu da belirtmiş olur. Bu yinelgen tanımla sayılar,
0={}
1={0}
2={0,1}
3={0,1,2}
...
n+1={0,1,...,n}
Bu tanımda iki doğal sayının eşitliği sayıların öğe sayısına dayanır.
Russell'ın farklı bir tanımı daha genel görünebilir:0 DOĞAL SAYIDIR
(sıfır, hiç öğesi olmayan tüm kümelerin kümesi)
(n nin ardılı, öğe sayısı n olan tüm kümelerin kümesi)
Ne var ki bu tanım belitsel küme kuramlarında geçerli değildir, çünkü bir sayı, küme olamayacak kadar büyük topluluklar olmak zorunda kalıyor. Ancak tipler kuramı gibi kuramlarda geçerlidir.
Umarım yardımcı olmusumdur

Büyüklük ve küçüklük ilişkileri [değiştir]

Doğal sayıların sıralanmasına en büyük basamaktan başlanır. Aynı basamakta büyük rakam bulunan sayı diğerinden büyüktür.
İki sayının yüz milyonlar basamaklarında eşit rakamlar bulunuyor. Bu nedenle karşılaştırma bir sonraki basamak olan on milyonlar basamaklarında yapılır. Bu basamaklarda 9 > 8 olduğundan 894.125.067 > 887.954.700 yazılır. “ 894.125.067 büyüktür 887.954.700 şeklinde okunur.”
Doğal Sayılar Kümesinde; iki doğal sayının toplamı yine bir doğal sayı olur.

[değiştir] Doğal sayılarda işlemler

Doğal sayılar toplama ve çarpma işlemine göre kapalıdırlar. İki doğal sayının çarpımı veya toplamı yine bir doğal sayıdır. Örneğin : 3.5=15 , 7.9=63 İki doğal sayının farkı veya bölümü bir doğal sayı olmayabilir bu nedenle doğal sayılar çıkarma ve bölme işlemine göre kapalı değildir. Örn: 9-12 = -3 , 2/4 = 1/2 gibi.

Toplama işlemi [değiştir]

Toplama işlemi ileri doğru sayma işlemidir. Toplama işlemine katılan sayılara terim, işlemin sonucuna toplam denir. Toplama işlemi sayıların aynı basamakları arasında yapılır. Bu nedenle toplama işleminde sayılar aynı basamaklar alt alta gelecek şekilde yapılır.
Doğal sayılarda toplama aşağıdaki cebirsel kurallara uyar:
a + 0 = a
a + b = b + a
(a + b) + c = a + (b + c)
(a + b)c = ac + bc
Bir a sayısını bir b sayısıyla toplamak, a sayısının b kere ardılını almak olarak tanımlanır. Daha matematiksel bir tanım verilmek istenirse Ard(n) gösterimi n sayısının ardılını ifâde etmek üzere, toplama aşağıdaki belitlerle tanımlanır:
  1. a + 0 = a
  2. a + Ard(b) = Ard(a + b)
Bu belitlerden yola çıkarak ardıllık işlemini toplama cinsinden göstermek mümkündür: 2. belitte b=0 seçilirse
a + Ard(0) = ard(a + 0)
sıfırın adrılı birdir, o halde,
Ard(a) = a + 1
olduğu kolaylıkla görülür.

Çarpma işlemi [değiştir]

Çarpma işlemi ard arda toplama işlemidir. Çarpma işlemine katılan sayılara çarpan, işlemin sonucuna çarpım denir.
Doğal sayılarda çarpma aşağıdaki cebirsel kurallara uyar:
a1 = a
ab = ba
(ab)c = a(bc)
c(a + b) = ca + cb
Bir a sayısını bir b sayısıyla çarpmak, a sayısının b kere toplamını almak olarak tanımlanır. Daha matematiksel bir tanım verilmek istenirse Ard(n) gösterimi n sayısının ardılını ifâde etmek üzere, çarpma aşağıdaki belitlerle tanımlanır:
  1. a1 = a
  2.  
Tam sayılardoğal sayılar (0,1,2,...) ve bunların negatif değerlerinden oluşur (-1,-2,-3,...). (-0 sayısı 0 sayısına eşit olduğundan ayrı bir tam sayı olarak sayılmaz). Matematikte tam sayıların tümünü kapsayan küme genellikle (ya da Zşeklinde gösterilir). Burada "Z" harfi Almanca Zahlen (sayılar) sözcüğünün baş harfinden gelmektedir.
Pozitif tam sayılar "0"dan uzaklaştıkça büyür. Negatif tam sayılar ise "0"dan uzaklaştıkça küçülür.
En büyük negatif tam sayı -1'dir. En küçük pozitif tam sayı ise +1'dir.
Mutlak değer, sayının başlangıç noktasına uzaklığını ifade eder. Başlangıç noktasına eşit uzaklıktaki sayılar mutlak değerce eşittir. Mutlak değer içindeki her sayı, mutlak değer dışına pozitif olarak çıkar.
Tamsayılar doğal sayıların bir genişlemesidir. Her doğal sayının "-1" denen yeni bir öğeyle çarpılarak kümeye katılması olarak düşünülebilir. Tabi daha ayrıntılı olarak, doğal sayılar kümesinin kartezyen çarpımı üzerine tanımlanacak ve bir önceki cümlenin işlevini görecek bir denklik bağıntısı bize tamsayıları inşâ edecek.
kümesinden seçtiğimiz (a,b) ve (c,d) öğeleri için "~" (tilda) bağıntısı,
şeklinde tanımlansın (a+d=b+c dememizin nedeni sezgisel olarak a-b=c-d durumunu oluşturmaktır). Bu bağıntının denklik bağıntısı olduğu kolaylıkla görülebilir. Bu durumda bu bağıntının denklik sınıfları bizim tamsayılar diyeceğimiz öğeler olarak düşünülecektir. Her bir denklik sınıfı temsilcisini,
olarak tanımlamış oluruz. Aslında [a,b] diye temsil ettiğimiz öğe
şeklindedir. Aşağıda toplama ve çarpmayı işlerken bu, daha iyi anlaşılabilecektir.
Bu noktada; bizim normalde, a ve b doğal sayı olmak üzere a-b diye bildiğimiz tamsayı aslında [a,b] kümesi olduğu görülebilir.
Yâni bu bağıntının bize "eksi" (negatif) kavramını ifade ettiği söylenebilir. O halde, tamsayılar kümesi aşağıdaki bölüm kümesidir:
Öyle ki kümesi bir halka oluşturur.

Konu başlıkları

[gizle]

Tarihçe [değiştir]

Tam sayılar kümesini pozitif tam sayılar, sıfır ve negatif tam sayılar diye üçe ayırmak gerek. Çünkü bunların her biri farklı tarihe sahipler. Pozitif tam sayıların ortaya çıkışı tam olarak bilinmiyor. 70 bin yıl önce pozitif tam sayıların, sayma sayıları olarak kullanıldığını gösteren belgeler var. İlk kullanımın saymak amacıyla olduğu anlaşılıyor. Güney Afrika'da bulunmuş olan bazı taşların üzerinde, yılın altı ayını, 28'er günlük ay takvimine göre sayan, çentikler atıldığı bulunmuştur. Bu çetelelerin sayma amacıyla kullanılmasını matematik olarak nitelemek zor. Sayıları ifade etmek için, her sayıya karşılık bir işaretin, bugünkü tabirimizle rakamların icadı matematiğin başlangıcı sayılabilir. Bu amaçla ilk yazılı kayıtlara M.Ö. 2000 yıllarında Babil'de rastlanıyor. 60 tabanına göre kurulmuş bu sayı sistemi negatif sayıları içinde taşımamakla beraber, kavram olarak sıfırı bulmak mümkün. Demek ki, sayı sistemi yazılı hale getirilinceye kadar, gelişmesi için de bir sürenin geçtiğini var sayarsak, ilk matematik ile ilgili yaklaşık başlangıç zamanı kestirimi bulmuş oluruz. Negatif sayıların ilk kayıtlarda görüldüğü zaman M.Ö. 100–50 dönemi Çin'dir. Hindistan'da Brahmagupta 628'de yayınladığı Brahmasphuta Siddhanta adlı eserinde borç anlamına gelmek üzere negatif sayılardan bahsettiği görülür. Orta Doğu'da muhasebe kayıtlarında borç veya zarar yerine negatif sayıların kullanılması da aynı zamanlara rastlamaktadır.. Avrupa'da negatif sayıları ilk Fibonacci'nin Liber Abaci'sinde görüyoruz. 1202 yılında yayınlanmış bu eser, Arap matematiğini Avrupa'ya taşımakta öncülük etmiştir. Negatif tam sayıların Avrupa matematiğinde tam olarak yerleşmesi 18. yy.'yi bulur.


İşlem Önceliği [değiştir]

Çarpma ve bölme, toplama ve çıkarmadan önce yapılır. Parantez varsada önce parantez içindeki işlem yapılır. Eğer parantez yoksa basta olan bolme ya da carpma yapılır
  • a:b.c=a/b.c
  • a.c:b=a.c/b

Toplama [değiştir]

Tam sayılarda toplama yapılırken sayılar pozitifse toplanır sonuca yazılır. İkiside negatifse toplama yapılır fakat sonuç negatif olur. Zıtsa birbirinden çıkarılır. Büyüğün işareti verilir.
Toplamanın tıpkı doğal sayılarda olduğu gibi kalması, daha doğrusu bu toplamanın doğal sayılardaki toplamanın bir genişlemesi olması gerekir. Bu nedenle tamsayılar aşağıdaki belitleri sağlamalıdır: Herhangi a,b,c tamsayıları için
  1. a+0=a (birim öğe)
  2. a+b=b+a (değişme)
  3. a+(b+c)=(a+b)+c (birleşme)
  4. a+(-a)=0 (tersinir öğe)
Buradaki son madde doğal sayılarda olmayan bir özelliktir ve bu özellik tamsayılar kümesini öbek (grup) yapar.

Toplamanın tam sayılardaki resmî tanımı [değiştir]

Eğer daha öz (pür) düşünecek olursak toplama işlemi,
şeklinde tanımlanarak yukarıdaki denklik sınıflarının özellikleri sağladığı kolaylıkla görülebilir:
  • Kümenin birim öğesi, yani sıfır öğesi [c,c] olur:
  • İşlem değişmeli olur:
  • Her öğenin tersi vardır:
  • İşlem birleşmelidir:
Ayrıca,
gibi değişiklikler görülür. ve daha sonra sonuç elde edilir.

Çıkarma [değiştir]

Tam sayılarla iki sayının farkı;eksilen sayı ile çıkan sayının toplama işlemine göre tersinin toplamı ile aynıdır.
(+9)-(+3)=(+9)+(-3)= (+6), (-7)-(-8)=(-7)+(+8)=(+1)
Örnek: 
(-12)+(-4)-(-8)+(+5)+(-1)
=(-12)+(-4)+(+8)+(+5)+(-1)
=(17)+(+13)
=(-4)


gaye yaren araz

Çarpma [değiştir]

Tam sayılarda çarpma işlemi yapılırken aynı işaretlilerin çarpımı pozitif farklı işaretlilerin çarpımı ise negatifdir. Bölme işlemindede aynı çarpma kuralı uygulanır ve sayı aynı doğal sayılarda olduğu gibi bölünür. Aynı işaretli iki tam sayı birbirine bölündüğünde sonuç pozitif, zıt işaretli iki tam sayı birbirine bölündüğünde ise sonuç negatiftir. tam sayıların sıfıra bölümü tanımsızdır. sıfırın tam sayılara bölümünde elde edilen sonuç ise sıfırdır.
Tamsayılarda çarpma işlemi doğal sayılardaki çarpmayla aynı özellikleri gösterir. Çarpma işlemi, "" imiyle gösterilir, ancak yazmak yerine doğrudan ab yazmak gelenektendir. Bu maddede de öyle yapacağız.
Herhangi a, b, c tamsayıları için,
  1. a1=a (birim öğe)
  2. ab=ba (değişme)
  3. a(bc)=(ab)c (birleşme)
özellikleri sağlanır. Tamsayılarda çarpmaya göre ters öğe yoktur.
Ayrıca toplama ile çarpmanın birbirleriyle olan ilişkisini gösteren dağılma özelliği de vardır:
  • a(b+c)=ab+ac (çarpmanın toplama üzerine dağılma ya da kısaca soldan dağılma özelliği)
  • (a+b)c=ac+bc (toplamanın çarpma üzerine dağılma ya da kısaca sağdan dağılma özelliği)
Toplamayla birlikte bu iki işlem tamsayıları değişmeli halka yapar.

Bölme [değiştir]

Bölme özünde çarpmanın tersidir. Tamsayılarda bölme, her sayı için tanımlanmamıştır. Bu yüzden bölüm her zaman tamsayılar kümesinin bir öğesi olmayabilir.
Örnek: (+15):(-3)=(-5)


Rasyonel Sayılar:
Rasyonel Sayılar, (oranlı sayılar) iki tamsayının birbirine oranı ile ifade edilebilen sayılardır.Rasyonel sayılar kümesitam sayıların bir genişlemesidir ve ile gösterilir. kümesi genelde şöyle tanımlanır:

(a ve b tam sayı ve sıfır olmamak üzere a/b şeklindeki sayılara Rasyonel sayı denir)
ve veya eşdeğer Rasyonel sayılardır. Dolayısıyla her Rasyonel sayı sonsuz şekilde ifade edilebilir. Rasyonel sayıların en basit formu ve tamsayılarının ortak böleninin olmadığı ifadesidir. Her tam sayı Rasyonel sayıdır. Çünkü veya veya şeklinde yani Rasyonel sayı tanımına uygun biçimde yazılabilirler.Rasyonel sayılar kümesi , tam sayılar kümesi 'yi kapsar. Yani .Daha ince bir tanımı ise tam sayılar üzerinden tanımlanacak bir denklik bağıntısıyla yapılabilir. Böylece her denklik sınıfı bir Rasyonel sayı olarak anılır. kümesinden seçilmiş keyfî (a,b) ve (c,d) öğeleri için "~" bağıntısı olarak tanımlansın. Bunun bir denklik bağıntısı olduğu kolaylıkla kanıtlanabilir. Bu durumda, denklik sınıfları olurlar. Rasyonel sayı ise basitçe şeklinde tanımlanır.Tanımda paydanın sıfır olmama şartı ifadesinin tanımlanmamış olmasındandır. Bir sayının sıfıra bölümü tanımsızdır.Sıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir.Pozitif rasyonel sayılar kümesi ile gösterilir. Negatif rasyonel sayılar kümesiile gösterilir.
Örneğin
 
Dörde bölünüp, dörtte biri kesilip alınmış ve geri kalan dörtte üçü gösterilen bir yuvarlak pasta
Yandaki şekilde,bir bütün yuvarlak pasta 4 eş parçaya bölünmüş ve bu 4 eş parçalardan her birisi olarak görülmektedir. Ancak bir parça alınmış olduğundan kalan eksikdir. Geriye kalan, dört eşit parçaya bölünmüş bütünün üç tane parçası (yani 3de 4 oranı) veya (kesiri)dir. Bu ifadesi şeklinde gösterilir. Burada ifadede kesir çizgisinin üstündeki değere (yani 3e) pay, kesir çizgisinin altındaki değere (yani 4’e) payda denir. Bu kesir, “üç bölü dört” ya da “dörtte üç” diye okunur.

Konu başlıkları

[gizle]

Rasyonel sayıların cebirsel özellikleri [değiştir]

olmak üzere:

Toplama belirtileri [değiştir]

Aynı işaretli iki rasyonel sayının toplama işlemi
  • Aynı işaretli iki rasyonel sayının toplama işlemi yapılırken ,rasyonel sayıların paydaları eşit değilse, paydalar eşitlenir. Payların mutlak değerleri toplamı paya yazılır.Ortak payda,paydaya yazılır.toplananların ortak işareti,toplama ,işaret olarak verilir.
  • Tam sayılı kesirler toplanırken , bu kesirler bileşik kesre çevrilerek toplama işlemi yapılır.
Ters işaretli iki rasyonel sayının toplama işlemi
  • Ters işaretli iki rasyonel sayının toplama işlemi yapılırken, rasyonel sayıların paydaları eşit değilse eşitlenir.payların mutlak değerleri farkı alınır,paya yazılır.Ortak payda ,paydaya yazılır.toplam olan rasyonel sayının işareti ise,mutlak değeri büyük olan rasyonel sayının işaretidir.
Kapalılık özelliği
  • İki rasyonel sayının toplamı , yine bir rasyonel sayıdır.Yani rasyonel sayılar kümesi toplama işlemine göre kapalıdır.
Toplamsal birim öğe (Etkisiz eleman özelliği)
  • bir rasyonel sayı ise olduğunda toplamanın birim öğesidir ve ile gösterilir.
  • ”0” tam sayısına, rasyonel sayılar kümesinde toplama işleminin etkisiz (birim )elemanı denir.
Toplamsal tersinir öğe
  • ve iki rasyonel sayı olsun. Eğer ise bu iki sayı birbirinin toplamsal tersidir.
  • Toplamları “0”tam sayısına eşit olan iki rasyonel sayıya toplama işlemine göre birbirinin tersi denir.
Toplamada değişme özelliği
  • Rasyonel sayılar kümesinde,toplama işleminin değişme özelliği vardır.
Toplamada birleşme özelliği
  • Rasyonel sayılar kümesinde toplama işleminin birleşme özelliği vardır.
Toplamanın çarpma üzerine dağılma özelliği (sağdan dağılma)
  •  

Çarpma belirtileri [değiştir]

  • İki rasyonel sayının çarpma işlemi payların çarpımı paya,paydaların çarpımı paydaya yazılarak yapılır.
  • Tam sayılı kesir biçiminde verilen rasyonel sayılar çarpılırken önce tam sayılı kesirler bileşik kesre çevrilir.Sonra çarpma işlemi yapılır.
  • Aynı işaretli iki rasyonel sayının çarpımı pozitif , ters işaretli iki rasyonel sayının çarpımı ise negatif bir rasyonel sayıdır.
Örneğin
Kapalılık özelliği
  • İki rasyonel sayının çarpımı yine bir rasyonel sayıdır.Yani rasyonel sayılar kümesi çarpma işlemine göre kapalıdır.
Yutan eleman
  • Bir rasyonel sayının “0”sayısı ile çarpımı “0”dır. ”0”sayısına ,çarpma işleminin yutan elemanı denir.
Çarpımsal birim öğe (Etkisiz eleman)
  • bir rasyonel sayı ise olduğunda çarpmanın birim öğesidir ve ile gösterilir.
  • rasyonel sayısına, çarpma işlemine göre etkisiz (birim) eleman denir.
Çarpımsal tersinir öğe (Ters eleman)
  • ve iki asyonel sayı olsun. Eğer ise bu iki sayı birbirinin çarpımsal tersidir.
  • , Çarpımları +1 olan iki rasyonel sayıya çarpma işlemine göre tersi denir.
Çarpmada değişme özelliği
  • Rasyonel sayılar kümesinde çarpma işleminin değişme özelliği vardır.
Çarpmada birleşme özelliği
  • Rasyonel sayılar kümesinde çarpma işleminin birleşme özelliği vardır.
Çarpmanın toplama üzerine dağılma özelliği (soldan dağılma)
  • , Rasyonel sayılar kümesinde , çarpma işleminin toplama işlemi üzerine dağılma özelliği vardır.
Çarpma işleminin çıkarma işlem üzerine dağılma özelliği
  • , Rasyonel sayılar kümesinde , çarpma işleminin çıkarma işlemi üzerine dağılma özelliği vardır.

İki rasyonel sayının farkı bulunurken, eksilen rasyonel sayı,çıkan rasyonel sayının toplama işlemine göre tersidir.
Yukarıda verilen örneğe göre iki rasyonel sayının farkı,yine bir rasyonel sayıdır.Buna göre rasyonel sayılar kümesi çıkarma işlemine göre kapalıdır.

Bölme belitleri [değiştir]

  • İki rasyonel sayının bölme işlemi yapılırken, bölünen rasyonel sayı , bölen rasyonel sayının çarpma işlemine göre tersi ile çarpılır.Elde edilen çarpım bölümü verir.
  • Aynı işaretli iki rasyonel sayının bölümü pozitif; ters işaretli ki rasyonel sayının bölümü ise negatif bir rasyonel sayıdır.
  • +1 tam sayısının , bir rasyonel sayıya bölünmesinden elde edilen bölüm,bölen rasyonel sayının çarpma işlemine göre tersine eşittir.
  • (-1) tam sayısının, bir rasyonel sayıya bölünmesinden elde edilen bölüm bölen rasyonel sayının çarpma işlemine göre tersinin ters işaretlisine eşittir.
  • Bir rasyonel sayının , +1 tamsayısına bölünmesinden elde edilen bölüm , rasyonel sayının kendisine eşittir.
  • Bir rasyonel sayının,(-1) tamsayısına bölünmesinden elde edilen bölüm , bölünen rasyonel sayının toplama işlemine göre tersine eşittir.
  • Sıfır sayısının , sıfırdan farklı olan her rasyonel sayıya bölümü ”0” dır.
  • Bir rasyonel sayının sıfıra bölümü tanımsızdır.
  • Rasyonel sayılar kümesinde bölme işleminde , doğal sayılar ve tam sayılar kümesindeki bölme işleminde olduğu gibi; ”bölünen = pay . payda” ilişkisi vardır.
  • Rasyonel sayılar kümesi , bölme işlemine göre kapalıdır.
  • Rasyonel sayılar kümesinde , bölme işleminin değişme özelliği yoktur.
  • Rasyonel sayılar kümesinde , bölme işleminin birleşme özelliği yoktur.

Rasyonel sayıların eşitliği [değiştir]

İki rasyonel sayının eşitliği, o sayıların pay ve paydalarının rasyonel olmasıyla anlaşılır. olmak üzere ve iki rasyonel sayı ise bu iki sayı ancak olduğunda eşittir.
Bu koşul, yukarıdaki tanımdan çıkarsanabilir. İki rasyonel sayı aynı denklik sınıfındaysa birbirine eşittir, Denklik bağıntısı da zaten koşulunu içermekteydi.

Rasyonel Sayıları Karşılaştırma (büyüklük ,küçüklük) [değiştir]

Paydaları eşit olan rasyonel sayılar [değiştir]

Paydaları eşit olan rasyonel oranlar icin payı büyük olan daha büyük, payı küçük olan daha küçüktür.
Örneğin

Burada paydalar eşit ve 20dir. Pay değerleri karşılaştırılınca soldaki pay 7 sagdaki pay 3 den daha büyük oldugu için, soldaki rasyonel oran daha büyüktür.
Unutmamalıdır ki negatif paylar karşılaştırılırken sadece mutlak değerlerin karşılaştırılması hatalı olup negatif işaretlerinin de ele alınması ve negatif sayılı pay değerlerde mutlak değeri büyük görünen sayının daha küçük olduğu hatırlanmalıdır:
Payda 20ye eşit olup sağda ki negatif pay değeri -3, sağdaki negatif pay değeri olan -7den daha büyük olduğu için sağdaki oran daha büyüktür.

Arada olma [değiştir]

İki rasyonel sayı arasına bir ya da birkaç rasyonel sayı yerleştirme işlemine denir.

İrrasyonel sayılar [değiştir]
Ana madde: İrrasyonel sayılar
Oransız sayılar veya İrrasyonel sayılar ise a/b şeklinde yazılamayan sayılardır. Q' kümesi ile gösterilirler. Bu kümenin en bilinen üyesi pi sayısıdır.Hiçbir oranlı sayı oransız sayılar kümesine dahil değildir. Aynı şekilde hiçbir oransız sayı da oranlı sayılar kümesine dahil değildir.
Örnek
  • ,
  •  

Gerçek sayılar [değiştir]

Ana madde: Gerçek sayılar
İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşimi gerçek sayılar kümesini oluşturur. Bu kümeye reel sayılar veya gerçel sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dahil edilmişlerdir. Anlatılanlara göre Pisagor doğadaki tüm büyüklüklerin rasyonel sayılarla ifade edilebileceğini söylemekteydi. Fakat bulduğu hipotenüseşitliğinin bir sonucu olarak x2 = 2 gibi bir değerlerle karşılaştı. Uzun yıllar boyu bu tür sayıların uzun kesirlerle ifade edilebileceğini iddia etti ve göstermeye çalıştıysa da, öğrencilerinden birinin bu gibi sayıların kesinlikle kesirli bir biçimde gösterilemeyeceğini ispat etmesiyle ikna olur ama hayatı boyu bunun bir sır gibi gizlenmesi için çalışır ve doğada gerçek sayıların yeri olmadığını söylemeye devam eder.
Gerçek sayılar, katsayıları tamsayılar ya da rasyonel sayılar olan polinomlar kümesinin çözümlerini göstermek için kullanılırlar. Bu bakımdan gerçek sayılar kümesi, tamsayı katsayılı polinomlar kümesi in bir cisim genişlemesidir.
Gerçel sayılar kümesi harfi ile ifade edilir.

Karmaşık sayılar [değiştir]

Ana madde: Karmaşık sayılar
Tüm cebirsel denklemleri çözebilmek için reel sayılar tekrar genişletilirse karmaşık sayılar veya kompleks sayılar kümesi elde edilir. Karmaşık sayıların sembolü dir. Rönesans döneminde gerçekleşen cebirsel denklemlerin çözüm metodlarındaki ilerlemelerin bir uzantısı olarak sayı kavramına eklenmişlerdir. Gerçek olmayan sayılar fikri reel sayılar kümesinde karşılığı olmayan -1 sayısının karekökünden gelmektedir. Bu sayı "i" sembolü ile gösterilir ve karesi -1 olarak kabul edilir.

Sınıflama özeti [değiştir]

Matematiksel notasyonda yukarıdaki bütün semboller büyük harfle ve kalın olarak yazılır.

Bir tablo olarak sayılar için şöyle sınıflandırma yapılabilir:

Diğer Tip Sayılar [değiştir]

Bu sayılara ek olarak matematikte, kümeler teorisinin uğraş alanında olan ordinal sayılar ve kardinal sayılar da sayı kavramının genişletilmesiyle elde edilmişlerdir. Bütünleme tekniğinin değişik bir uygulanmasıyla elde edilen p-sel sayılarve reel sayılara sonsuz küçükler ve büyüklerin eklenmesiyle elde edilen sürreel sayılar da sayı kavramının parçaları olarak düşünülürler.
İki tane karmaşık birimi olan ya da bir tane hiperbolik iki tane de karmaşık birimi olan kümeye çifte karmaşık sayılar kümesi denir. Bu kümede her sayı
şeklinde ifade edilebilir. Ancak dörtlük sayılarla karıştırılmamalıdır. Çünkü bu kümede
iken
olarak tanımlanır. Zira, bu sayılar dörtlük sayıların değişmelisi olarak anılır.
Bu maddede , yâni hiperbolik birim genellikle ile gösterilecektir.

Konu başlıkları

[gizle]

Tanım [değiştir]

Çifte karmaşık sayılar birkaç şekilde tanımlanabilir. En yaygın tanımı iki farklı karmaşık sayı kümesinin birleştirimi olduğu için küme çifte karmaşık sıfatını almıştır.

İki karmaşık birim sayı tanımı [değiştir]

İki farklı karmaşık sayı kümesi olduğunu varsayalım:
ve
.
Yâni biri gerçel sayılardan elde ettiğimiz alışık olduğumuz karmaşık sayılar kümesi, diğeri ise alışık olduğumuz karmaşık sayılardan elde ettiğimiz daha geniş bir halka. Bu kümeye çifte karmaşık sayılar kümesi denir.
O halde, kümesindeki her öğe,
şeklinde yazılabilir. Buradaki iki birimin çarpımı
olarak tanımlanır ve bu sayıya 'hiperbolik birim sayı adı verilir. Açık olarak görülür ki bu birim sayı,
özelliğini sağlar. Bu takdirde her çifte karmaşık sayı,
olarak ifade edilebilir.

Karmaşık katsayılı hiperbolik sayı tanımı [değiştir]

Eğer hiperbolik bir sayının tanımını
gibi karmaşık katsayılı olarak alırsak her çifte karmaşık sayı
şeklinde ifade edilecektir. Burada
ve bu takdirde
olarak tanımlamakla her çifte karmaşık sayıyı
şeklinde ifade etmiş ve istediğimiz özellikleri sağlamış oluruz.

Hiç yorum yok: